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Abstract
Metal-organic frameworks (MOFs), constructed by organic linkers and metal nodes, are a new class of crystalline

porous materials with significant application potentials. Featured with extremely high surface area, large porosity,
tunable pore size, and flexible functionality, MOFs have gained extensive explorations as a highly versatile
platform for functional applications in many research fields. This short review presents the applications of metal-
organic frameworks (MOFs) synthesized from pyrazolate derivatives. In fact, many pyrazolate ligands were
examined: These ligands were used to synthesize a variety of MOFs that were subsequently investigated for
batteries, luminescent sensing, gas storage, catalytic performance etc.
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1. Introduction

The discovery of metal-organic frameworks (MOFs), as a new class of porous materials with high
surface areas, tunable pore size and other engineerable properties has unlocked the potential
opportunities for scientists to solve some pressing problems related to sustainable energy and

environment [1]. Similar to other technologies, the research activities in the first 20 years have been
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focused on the discovery phase [2-5], and in the next 30 years research interests will shift towards
applications [6-8]. Metal—organic frameworks (MOFs) are fabricated from the metal ions or metal-0X0
units coordinating with electron-donating organic ligands, so they can be designedly synthesized with
tunable high porosities, large specific surface areas, uniform pore sizes, and functional structures [9].
These structural features make them favorable luminescent sensing candidates. It has been observed that
organic ligands play crucial roles for the designed synthesis of some interesting coordination networks,
such as the donating type, the flexibility, and the geometry of the organic ligands [10-13]. Especially the
coordination compounds synthesized from transition metal ions and N-heterocyclic carboxylic ligands
which containing heterocyclic nitrogen atoms, this type of compounds with open frameworks have been
continuously explored with multiple applications in many fields, such as catalysis, ion exchange,

selective separation and fluorescence probe, etc [14-28].

2. Examples of MOFs based on pyrazole carboxilic acid

Different MOF architectures were prepared using pyrazole carboxylic acid ligand as it can be
observed from Fig.1. The compound 1 of Fig.1 is a flexible, multifunctional and an excellent material
for the construction of novel coordination compounds and can be taken as an example to reveal the role
of the pH value of the reaction in controlling the structure of the supramolecular architecture [29]. The
Mannich catalytic reaction of zirconium MOFs based on compound 2 of Fig.1 and its derivatives showed
a good conversion compared to other nitrogen ligands [30]. Furthermore, the compound 3 (1H-pyrazole-
4-carboxylic acid) has been used in mechanical and electrochemistry synthesis methods, for preparing
attractive MOF porous materials [31]. The preparation of luminescent Tb-MOFs based on compound 4
of Fig.1 was demonstrated to exhibit high sensitivity and detection of uric acid in aqueous media [32].
The compound 5 of Fig.1 (1-H- pyrazole-3,5-dicarboxylic acid), strongly bent linker molecule was used
to prepare MOFs with specific topologies [33]. The compounds 6 and 7 of Fig.1 were used to synthesize
a variety of MOFs that were subsequently investigated for luminescent sensing, gas storage, and catalytic
performance [34].

The perfluorinated MOF materials based on compound 8 of Fig.1 has shown an excellent magnetic
property [35], whereas the compound 9 in Fig.1 (N-rich pyridyl-pyrazole) was used as a linker in a
synthesis of Ln-MOFs with good gas storage, magnetic and luminescence properties [36]. The post-
synthesis of metallation used compound 10 of Fig.1 for enhancing catalytic performance of MOFs
materials [37]. A luminescent sensor 3D MOF based on compound 11 of Fig.1 has been prepared with
interesting topology [38]. The asymmetric tritopic pyrazole carboxylate ligand (compound 12 of Fig. 1)

was used as a subunit to synthesis MOFs for acetone sensor application [39]. The bifunctional pyrazole-
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isophtalate ligand (compound 13 of Fig.1) was used in the synthesis of flexible porous MOFs with

dynamic COg sorption isotherm [40].
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Figure 1: List of organic linkers used in the synthesis of MOFs described in this review.

A two-dimensional MOFs were prepared using compound 14 of Fig.1 for a fluorescent sensor

application, particularly for ascorbic acid detection [41]. A new luminescent MOFs based on compound

AJCER



M. El Boutaybi et al. / Arab. J. Chem. Environ. Res. 07 (2020) 01-10 4

15 of Fig.1 were prepared and used for selective sensing of nitroaromatic explosives [42]. The
compounds 16 of Fig.1 has been used by Bu et al. in a Co-MOF and a Zn-MOF, which show good CO,-
sorption properties [43,44]. A series of metal-organic frameworks based on flexible ligands with
nitrogen heterocycles and carboxyl (compounds 17 and 18 and 19 of Fig.1) were prepared and used in
catalysis, ion exchange, selective separation and fluorescence [45]. The compounds in Figure 1 are not
an exhaustive list of all the pyrazole carboxylic acid, but the main compounds involved in the preparation
of MOFs as linkers.

3. Some applications of MOFs

Metal-organic frameworks (MOFs) are a class of porous materials first defined by Yaghi and co-
workers [46], which recently have attracted extensive research interests both in LIBs and supercapacitors
[47-54]. For example, Tarascon et al. have done pioneering work on the use of MIL-53 (Fe) as a cathode
material [55] (Figure 2). Besides, Kang and Yaghi et al. have reported 23 kinds of different MOFs doped

with graphene as supercapacitors, and several members of them give high capacitances [56].
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Figure 2: Schematic Illustration of MOF-Related Materials for Rechargeable Batteries
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Simultaneously, polyoxometalates (POMs) with multi-electron redox properties, stability, and
structural diversity are well-suited to achieve a high capacity for energy storage applications (LI1Bs and
pseudo capacitance) [57-61]. In addition to that Metal—organic frameworks have emerged as desirable
cross-functional platforms for electrochemical and photochemical energy conversion and storage (ECS)
systems owing to their highly ordered and tunable compositions and structures [62]. MOFs have been
extensively explored in different battery systems in the past decades. Their adjustable porous structures
and controllable compositions at molecular level are advantageous for the search of advanced electrode
materials for batteries (e.g., LIBs, LSBs, LOBs, and SIBs) [63] (Figure 2). Pyrazole is a very versatile
ligand and can play many different roles in chemical systems. Different pyrazole compounds were used
to synthesize MOFs for many applications. Among them some are cited above in figure 1. A New MOFs
constructed from Carboxylate Functionalized Bispyrazolylmethane (compound 6 of Fig.1) for Coal
Mine Methane Capture and synthesis of gas storage materials [34]. The MOFs based on pyrazole
compound 5 Fig. 1, were used for water adsorption and it was demonstrated to be a crucial material for
many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote
areas [64,65].

4. Conclusion

In summary, MOFs have received tremendous advances from structural design and controllable
synthesis to their functional applications in the past two decades. Although many obstacles remain to be
solved on their way to the industrial applications, the academia and chemical industry are beginning to
join hands to realize practical applications of MOFs. We expect a bright future for MOFs with the
collaborative efforts from researchers in different fields including chemists, materials scientists,

engineers, medical professionals, and others.
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